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ABSTRACT 

 

Oxidative stress is a biological phenomenon clarified as the decreased ability of the 

antioxidative system to neutralize the excessive reactive oxygen species (ROS). At a low 

concentration, ROS serves as a signal molecule to exert its physiological functions but the 

persistently excessive ROS predisposes a variety of disorders including coronary heart diseases, 

atherosclerosis, diabetes mellitus, hemolytic anemia, pulmonary diseases, neurodegenerative 

disorders, etc. The use of antioxidants to protect against oxidative damage is a well-established 

practice. In these aspects, melatonin and other classical antioxidant vitamins such as carotenoids, 

α-tocopherol, vitamin D, and ascorbic acid have gained enormous research attention currently. In 

this review, we will discuss the comparative as well as the synergistic actions of melatonin and 

other antioxidant vitamins in the treatment of oxidative stress-associated disorders. Noteworthy, 

based on the evidences we will discuss, we recommend the combination of melatonin and vitamins 

to alleviate oxidative damage in the broad spectrum. 
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1. INTRODUCTION 

 

Reactive oxygen species (ROS) or reactive oxygen intermediates (ROI) are produced as the 

by-products of normal cellular metabolism. At low or moderate concentrations, ROS facilitates 

several physiological processes including the killing of invading pathogens, wound healing, and 

tissue repairment (1). ROS also acts as important signaling molecules by modulating several 

redox-sensitive signaling pathways. A delicate balance exists between ROS production and 

antioxidant defense capacity in all organisms. This balance maintains the homeostasis of the 

intracellular environments, otherwise, its imbalance will cause oxidative damage to cells. It has 
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been documented that oxidative stress perturbs the mitochondrial function of energy supply and 

leads to apoptosis (2). Naturally, cells are equipped with antioxidant machinery including 

enzymatic components such as superoxide dismutase (SOD), catalase (CAT), glutathione 

reductase (GR), and glutathione peroxidase (GPx) (3) as well as non-enzymatic substances 

including vitamins such as ascorbic acid, alpha-tocopherol, carotenoids and vitamin D (4). Most 

of these vitamins, except vitamin D, are acquired from the diet. They are highly crucial for 

maintaining normal cellular functions and their deficiencies may predispose health issues (4). 

     Melatonin (N-acetyl-5-methoxytryptamine), a tryptophan derivative, is well recognized for its 

antioxidative function. A combination of free radical scavenging, metal chelating, and 

antioxidative enzyme stimulating properties make melatonin a superior choice over other classical 

antioxidative molecules (5). Despite the endocrinal properties of melatonin, it can be portrayed as 

a vitamin from a nutritional point of view since it is also present in foods including vegetables, 

fruits, seeds, rice, medicinal herbs, meat, fish, eggs, and wine at high concentrations (6, 7). 

Melatonin possesses several functional similarities with vitamin D and A (6). Numerous studies 

have confirmed the antioxidant potency of melatonin and the underlying mechanisms through 

which melatonin counteracts oxidative stress (8-11). However, to our best knowledge, few studies 

have investigated the preventive potential of vitamins on oxidative stress-associated diseases. 

Additionally, synergistic effects of melatonin and vitamins toward amelioration of oxidative 

damage remain less explored yet. This review aims to discuss the potential role of vitamins and 

melatonin in attenuating tissue or cellular oxidative damage, either synergistically or additively. 

 

2. ROS PRODUCTION AT A GLANCE 

 

Electron transport chain (ETC), the major energy generating pathway, is the harbor of free 

radical generation. Leakage of electrons from the respiratory chain generates super-oxide anion 

(O2•
-), which further leads to the formation of highly reactive hydroxyl radical (•OH), lipid 

peroxides, hydrogen peroxide (H2O2), hypochlorous acid (HOCl) along with reactive nitrogen 

species (RNS) such as nitric oxide (NO) and peroxynitrite (ONOO•) (12, 13). The H2O2 is mainly 

generated by superoxide dismutase (SOD). In the presence of transition metals such as Fe2+ and 

Cu+, H2O2 is catalysed to form the most deleterious •OH via Fenton reaction (13-15) (Figure 1). 

In addition, other enzymatic reactions also can produce ROS including the NADH oxidase, 

cycloxidase 2 (COX 2), and, cytochrome P450 system (14-17). The phagocytotic process also 

involves in free radical generation. The non-enzymatic reactions are another source of ROS 

generation when oxygen reacts with certain organic compounds, cells are exposed to ionizing 

radiation, or mitochondria are stressed (16-18). Generally, when heavy metals (Cd, Hg, Pb, Fe, 

and As), some drugs (cyclosporine, tacrolimus, gentamycin, bleomycin), chemical solvents, 

oxidized food (smoked meat, used oil and fat), cigarette smoke, alcohol are exposed to cells under 

certain conditions, all of them can produce free radicals as by-products (1, 18, 19). The excessive 

ROS oxidizes lipid, protein, DNA, and damages cellular structures (14-17). Especially, the •OH 

and ONOO• are the most reactive species and are the major culprits of cellular lipid peroxidation 

and membrane damage (2). ROS can also make proteins and DNA oxidative damage to form 

carboxyl protein and 8-hydroxyguanosine, respectively (2, 20, 21). Overproduction of free radicals 

for a prolonged period not only triggers chronic and degenerative diseases including 

atherosclerosis,  diabetes, neurodegenerative diseases, arthritis, and cancer but also accelerates the 

aging process and inflammation (22, 23). 
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Fig. 1. ROS  generation in mitochondria and the potential consequences. 

 

3. ANTIOXIDANTS AGAINST OXIDATIVE STRESS 

 

Antioxidants are those compounds that inhibit molecular oxidation by interrupting radical chain 

reactions (24). They can donate electron(s) to neutralize ROS  (25). They are usually low molecular 

weight molecules and can reduce free radicals to cease their propagation reaction and protect the 

vital molecules. Glutathione, ubiquinol, and uric acid are antioxidants produced endogenously by 

normal metabolism. Together with the antioxidant enzymes SOD, CAT and GPx they build the 

first line of cellular defense against oxidative stress (25, 26). This defense system controls the  

ROS at a low level. This low level of ROS serves as the physiological redox signaling and also the 

stimulator of endogenous antioxidant machinery (27). Mitochondria-targeted antioxidants are 

considered more potent than others since mitochondria are the main site of ROS generation. To 

access mitochondria, these antioxidants are required to cross the mitochondrial membrane (28). 

For example, the triphenylphosphonium cation (TPP+) with a positively charged phosphorous 

atom surrounded by a lipophilic surface can enter mitochondria with ease. Therefore,  ubiquinone 

moiety of coenzyme Q and vitamin E conjugated with TPP are considered as mitochondrial-

targeted antioxidants (29). 
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4. VITAMINS AS ANTIOXIDANTS 

 

Several vitamins are the most relevant antioxidants present in our diet and they exhibit a 

variety of physiological roles in human health (30). Vitamins can be obtained from both 

endogenous and exogenous sources. Certain vitamins are synthesized endogenously under specific 

conditions, for instance, niacin is a tryptophan-derived molecule in mammals, and vitamin D is 

converted from 7-dehydrocholesterol in the skin by UV-B radiation (31). Carotenoids, tocopherol, 

vitamin D, and ascorbic acid are the most well-known conventional antioxidant vitamins and their 

roles in maintaining cellular redox status are discussed below. 

 

4.1. Carotenoids. 

 

Carotenoids or provitamin A are naturally occurring compounds that are only produced in the 

plastid of plants and algae, along with some bacteria and fungi (32). Based on the structure, 

carotenoids are divided into two classes namely carotenes and xanthophylls. Carotenes are further 

classified into α-carotene, β-carotene, and lycopene whereas oxygen-derived carotenoids are 

known as xanthophylls (lutein, zeaxanthin) (33, 34). Since carotenoids are highly lipophilic 

molecules, they can easily pass through biological membranes, thus forestalling the bilayer of the 

membrane from radical attack (35). They are highly capable of quenching singlet oxygen, 

superoxide anion, hydroxyl radicals, peroxyl radicals, and nitrogen-derived radicals. Carotenoids 

display their antioxidant properties through electron transfer, hydrogen abstraction, or addition 

reaction. This lipophilic antioxidant also protects against membrane lipid peroxidation (36, 37). 

Apart from their antioxidant properties, carotenoids also facilitate the regulation of the cell cycle, 

apoptosis, cell differentiation (38), improvement of the immune system (39), and promoting 

growth factors (40). Lutein, an anti-inflammatory carotenoid, exerts its function by inhibiting NF-

κB pathways (41). Kishimoto et al. suggest that the antioxidant and anti-inflammatory actions of 

lutein can suppress coronary artery disease, atherosclerosis, hypertension (42, 43), and cancer (44). 

Others also confirmed the protective effects of lutein on myocardium injury from oxidative stress 

and apoptosis (45). 

 

4.2. Vitamin D. 

 

Vitamin D (calciferol) comprises of two major forms, vitamin D2 (ergocalciferol) and vitamin 

D3 (cholecalciferol). Vitamin D2 is mainly obtained from dietary sources while vitamin D3 is 

synthesized from 7-dehydrocholesterol in human skin upon exposure to sunlight. After cutaneous 

synthesis and/or dietary intake, it undergoes an activation process in the liver and kidney forming 

25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 (calcitriol), respectively (46). This 

prohormone not only maintains calcium homeostasis but is also crucial for numerous other 

physiological activities (47, 48). For example, vitamin D deficiency is prone to developing certain 

chronic disorders including insulin resistance and type 2 diabetes (49, 50), cardiovascular 

complications (51), and progressive chronic kidney diseases (52). It acts as a membrane 

antioxidant by inhibiting lipid peroxidation (53). Sardar et al. (54) have suggested that the 

antioxidant efficacy of vitamin D3 against lipid peroxidation is similar to that of vitamin E. Vitamin 

D3 holds a more prominent influence on the enhancement of the activity of antioxidant enzymes 

such as glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PDH) than 

vitamin E (54). Evidence has implied that vitamin D3 administration in diabetic mice reduces their 
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ROS formation by down-regulating NADPH oxidase expression (55, 56). Vitamin D  improves 

SOD activity in mice (57-59) and enhances the ROS removal process by increasing the 

intracellular pool of reduced glutathione via upregulation of glutamate-cysteine ligase (GCL) and 

glutathione reductase (GR) gene expressions (60). A positive correlation between plasma GSH 

and vitamin D has been reported by Jain et al. (61). Vitamin D3 exerts its antioxidative action 

through binding with its nuclear receptor VDR (vitamin D receptor). It regulates intracellular 

oxidative metabolism by recruiting several nuclear coactivators or corepressors that mediate gene 

expression. When binding to the receptor, vitamin D3 induces downstream signaling and controls 

free radical generation in mice hepatocytes (57, 60, 62). 

 

4.3. Vitamin E. 

 

The antioxidant vitamin was first identified by Evans and Bishop (1922) as a regulatory 

component of the murine reproductive system (63). It is made up of eight analogs including α, β, 

γ, δ tocopherols and four corresponding tocotrienols. Among them, the most common form α-

tocopherol is present in human tissues (64). It is well documented that vitamin E acts as a potent 

peroxyl radical scavenger thus it prevents the propagation of chain reaction of polyunsaturated 

fatty acids in the cell membrane (65, 66). Another crucial role of this vitamin E is to modulate cell 

signaling pathways. Cell proliferation and differentiation along with apoptosis are efficiently 

regulated  by protein kinase C (PKC). The PKC family have 12 isoenzymes which are expressed 

in a variety of cells, respectively to transduce cell signaling through receptor activation. It has been 

reported that PKC is inhibited by α-tocopherol. The plausible mechanism of PKC inhibition lies 

in the activation of protein phosphatase 2A and increase in  PKC- α dephosphorylation (67, 68).  

Furthermore, vitamin E reduces superoxide anion formation in neutrophils and macrophages and 

inhibits platelet aggregation and endothelial nitric oxide production (69). Vitamin E deficiency 

might also induce the risk of heart attack, cancer, stroke, fibrocystic breast disease, epilepsy, 

diabetes, Parkinson’s disease, and Alzheimer’s disease (70). 

 

4.4. Vitamin C. 

 

Vitamin C (ascorbic acid) a water-soluble molecule plays a dual role in the redox reaction. 

Some mammals, other than humans, non-human primates, and guinea pigs, are capable of 

producing vitamin C from glucose. Humans along with these species have lost gluconolactone 

oxidase, a key regulatory enzyme for catalyzing the final step of vitamin C biosynthesis, during 

evolution (71, 72). Vitamin C is a potent reductive agent which is able to donate electrons to 

neutralize ROS. When ascorbic acid donates one electron, it is transformed into a semi-

dehydroascorbic acid or ascorbyl radical. This intermediate is transient and quickly converted into 

dehydroascorbic acid by losing another electron (73-75). Vitamin C is highly effective to scavenge  

H2O2, •OH, O2
-•, and singlet oxygen (1O2). This property makes vitamin C an important antioxidant 

to protect cellular components from oxidative damage. Vitamin C also preserves the antioxidant 

capacity of vitamin E by reducing tocopheroxyl radicals and protects the cell membrane and other 

cellular compartments (76). However, vitamin C displays a prooxidant effect via promoting the 

reduction of redox-active transition metals like Fe3+ to Fe2+ and Cu2+ to Cu+, which in turn can 

reduce H2O2, thus, producing the most dangerous •OH  through the Fenton reaction. In the human 

body, the elimination of free iron via the iron-binding protein transferrin and ferritin is a possible 

approach to targetting vitamin C-mediated oxidation (77). 



 

Melatonin Research (Melatonin Res.)                                  http://www.melatonin-research.net 

 

Melatonin Res. 2022, Vol 5 (3) 254-277; doi: 10.32794/mr112500131                                  259 
 
 

5. MELATONIN AS AN ANTIOXIDANT 

 

Melatonin is  a potent antioxidant due to its ability to initiate a cascade of reactions against free 

radicals. Melatonin can directly scavenge free radicals (78) while its secondary and tertiary 

metabolites can also detoxify free radicals. Due to this cascade reactions, one melatonin molecule  

can quench up to 10 ROS. This characteristic of melatonin is different from other classical 

antioxidants which can only scavenge a reactive oxygen moiety per molecule. Melatonin is a 

amphiphilic molecule and can easily pass through the biological membrane to exert its 

antioxidative effect (79-81). Several comparative studies  of  melatonin with other endogenous or 

exogenous antioxidants including  vitamin C, vitamin E, NADH, and glutathione in both in vitro 

and in vivo conditions have confirmed superiority of melatonin over them (82). Melatonin’s 

metabolites such as cyclic-3-hydroxymelatonin (C3HOM) (83) and N-acetyl-5-

methoxykynuramine (AMK) (84) are even more efficient hydroxyl radical scavengers than 

melatonin itself. N1-acetyl-N2- formyl-5-methoxykynuramine (AFMK), another metabolite of 

melatonin, is also capable of quenching radicals through three different mechanisms; (a) radical 

adduct formation, (b) hydrogen transfer, and (c) single electron transfer (84). In addition,  

melatonin can stimulates gene expression and activity of several antioxidant enzymes including  

SOD, GPx and CAT (85) to produce its indirect antioxidant capacity. Therefore, melatonin 

effectively preserve cell membrane fluidity and function by preventing lipid peroxidation and 

protein degradation (86).  

 

6. MELATONIN: A STRONG DEFENDER OF MITOCHONDRIA 

 

Mitochondria serve multiple important functions including regulation of cellular metabolism, 

ATP production and apoptosis. Excess of ROS and RNS production during mitochondrial 

respiration can lead to cell death. The role of melatonin as a mitochondrial protector was first 

reported by Mansouri et al. (87). When compared to two synthetic mitochondria-targeted 

antioxidants, MitoQ and MitoE (88, 89) melatonin exhibits similar or even better mitochondrial 

protective effects than them (90). The implication of these findings supports the fact that melatonin 

should be considered as an endogenous mitochondria-targeted antioxidant consistent with the 

proposal that mitochondria might be the intracellular site of melatonin production (91). Many 

studies have elucidated the ameliorative role of melatonin against mitochondrial injury caused by 

several threats like ischemia/reperfusion (92, 93), sepsis (94, 95), in vitro fertilization (96, 97), β-

amyloid peptide (98, 99), arsenite (100) and lipopolysaccharide (101). Additionally, melatonin 

administration significantly delays the onset and mortality of animal model of Huntington’s 

disease (HD) which is an autosomal neurodegenerative disorder where mitochondrial alteration 

plays an integral role in the pathogenesis (102). Multiple sclerosis, the most common inflammatory 

disease of the locomotic neurons  with mitochondrial abnormalities, can be alleviated through 

restoring mitochondrial function followed by melatonin administration (103). Melatonin also 

preserves the mitochondrial membrane potential which is important for ATP generation and 

establishing homeostasis in the overall mitochondrial function (104, 105). It stimulates anti-

apoptotic mitochondrial protein while suppressing the pro-apoptotic protein expression thus 

preventing mitochondria associated apoptosis (106, 107). Furthermore, melatonin is also involved 

in the inhibition of caspase 3 activity as well as the release of cytochrome C from mitochondria 

(108, 109). Hence, melatonin provides overall protection to mitochondria thus reducing oxidative 

damage. 
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7. CUMULATIVE ACTIONS OF VITAMINS AND MELATONIN 

 

Melatonin and other classical antioxidant vitamins have profound effects on cellular redox 

metabolism. Some of their synergistic as well as combined functions on various organs are 

discussed below (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The action pathways of vitamins and melatonin in amelioration of ROS.  

     ROS: Reactive oxygen species, P2A: Protein phosphatase 2A, PKC-α: Protein kinase C-α, NF-

κβ: Nuclear factor-kappa B, C3HOM: Cyclic-3-hydroxy melatonin, AMK:N-acetyl-5-

methoxykynuramine, AFMK: N1-acetyl-N2- formyl-5-methoxykynuramine 

 

7.1. Cardioprotective action. 

 

Pieces of evidence collected during the last 15 years have shown the crucial effects of melatonin 

on the cardiovascular system (110, 111). The cardio-protective role of melatonin pertains to its 

direct free radical scavenging and anti-inflammatory activities. It inhibits the release of 

inflammatory cytokines including TNF-α, IL-1β, and IL-6 while increasing anti-inflammatory 

mediators such as IL-10 thus, promoting the overall anti-inflammatory effect (112). Since 

dyslipidemia is a major contributory factor to coronary heart disease (CHD), studies have 

demonstrated that melatonin regulates blood lipid and prevents oxidized LDL formation, both of 

which preserve  cardiomyocytes from oxidative injury (111). Melatonin exhibits beneficial effects 

on cardiac health via its receptor-mediated action. Melatonin receptors, MT1 and MT2 are both 

expressed in the cardiovascular system and are responsible for the regulation of the vascular tone. 

MT1 mediates vasoconstriction while MT2 mediates vascular dilation (113). On the other hand, 

vitamin E also shows the cardio-protective effects due to its antioxidant and anti-inflammatory 

actions (114). Vitamin E attenuates myocardial infarction via diminishing ROS generation and 
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lipid peroxidation. Many studies have suggested the antioxidant and anti-atherogenic properties of 

vitamin E in the animal model (115-117). Several clinical studies also support the evidence 

(118,119). Endothelial nitric oxide (NO) generated by the action of nitric oxide synthase is found 

to regulate the vascular tone and endothelial functions. Cardiomyocytes express NOS that 

regulates myocardial contractility, heart rate and cardiac oxygen consumption (120). Chronic 

alcohol consumption is attributed to reduce NO synthesis and decreases the bioactive NO which 

is ameliorated by both of melatonin and vitamin C which indicates the potential of the synergistic 

action between melatonin and other classic antioxidants (121). 

 

7.2. Protection of neurodegenerative disorders.  

 

The complexed chemical constituents of membrane and high energy requirement make neurons 

more vulnerable to oxidative stress. Neuronal loss will negatively affects the behavior and 

physiological functions of the individuals. Many acute factors including  hypoxia, stroke, physical 

trauma, hypoglycemia, drug neurotoxicity, viruses, and radiation can cause  neuronal damage 

(122). The glutamate excitotoxicity, oxidative injury and mitochondrial malfunction are three 

major causative factors related to the neuronal loss (123). Glutamate is an important 

neurotransmitter in CNS which plays a pivotal role in learning and memory formation. Excessive 

production of glutamate induces  neuronal  excitatory effects through activation of glutamate-N-

methyl-D-aspartate (NMDA) receptor leading to Ca2+ overload and cell death. Amyloid-β protein, 

a biomarker of Alzheimer’s disease (AD), is also a stimulator of glutamate accumulation and an 

activator of NMDA receptor . NMDA receptor activation further promotes phosphorylation of tau 

protein and leads to the disintegration of microtubules, loss of synapse and gradually neuronal 

death (124). Additionally, increased prostaglandin secretion and free radical formation in 

microglia trigger cytokine production including IL-6, IL-1β, TNF-α that contribute to neuronal 

damage (125). It is well known that mitochondria play a pivotal role in energy metabolism and 

apoptosis in brain cells (126). Mitochondrial dysfunction results in decreased ATP formation and 

ROS generation leading to apoptosis (127). Impaired mitochondrial proteins related to  electron 

transport chain are associated with pathophysiology of AD, Parkinson’s disease (PD), and 

amylotrophic lateral sclerosis (ALS) (128, 129). Melatonin is considered as a neuroprotective 

agent as it shows anti excitatory and sedative effects (130-132). The protective mechanism of 

melatonin is partially mediated by the GABAergic system indicating that melatonin inhibits the β-

amyloid peptide toxicity through the activation of GABA receptors (133). Melatonin also can 

promote gene transcription of antioxidant enzymes of SOD-1, CAT and GPx in the cortex of 

transgenic AD mice (134). Melatonin controls ROS production by inhibiting NADPH oxidase 

which is the main source of oxidative stress in AD brain (135).  Furthermore, the protective action 

of this ubiquitous indole against AD and PD may contribute to its role in maintaining 

mitochondrial homeostasis (136). Moreover, vitamin E is also a neuroprotective agent. For 

example,  vitamin E deficiency is mostly related to neurological complications (137-139). Many 

other studies have  demonstrated that α-tocopherol protects neurons from oxidative stress in  both 

the in vivo and in vitro conditions (140-142). The anti-inflammatory as well as antioxidative 

actions of this vitamin are attributed to its neuroprotective function. It has been found that α-

tocopherol supplementation can reduce the synthesis of inflammatory mediator prostaglandin E2 

by inhibiting the activity of cyclooxygenase 2 (COX-2) (143). Furthermore, vitamin E inhibits p38 

MAPK (mitogen-activated protein kinase) thus, hindering phosphorylation of tau protein since 

phosphorylated aggregation of tau causes neurofibrillary tangles which is an important biomarker 
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in AD brain (144). Montilla Lopez P et al. (145) have demonstrated that the toxicity of ocadeic 

acid in neuroblastoma cells is mitigated by administration of both melatonin and vitamin C. 

However, melatonin is more efficacious than vitamin C. (Table 1). 

 

Table 1: Comparative studies of melatonin and vitamins. 

 

7.3. Prevention of diabetes mellitus. 

 

Since oxidative stress is a major factor in the pathogenesis of diabetes mellitus; antioxidant 

therapy could be a suitable strategy to alleviate the symptoms. Being a potent antioxidant, 

melatonin reduces lipid peroxidation and enhances GPx activity in Type 1 diabetic rats in 

comparable to vitamin E (146). Melatonin administration maintains normal blood glucose level 

Investigator Main findings and conclusion 

Montilla P et 

al. (2001) 

(182) 

In rat cholestasis model, melatonin and Vitamin E both reduce the oxidative 

biomarkers (MDA, GSH) and increase the activities of  antioxidant enzymes 

(CAT, SOD, GR), but melatonin at a dose of 500μg/kg body weight (b.w) is more 

efficient  than that of vitamin E at 15mg/kg b.w. 

Montilla- 

Lopez P et 

al. (2002) 

(145) 

A dose dependent study of melatonin and vitamin C against okadaic acid induced 

oxidative stress in neuroblastoma cells show that both can significantly reduce 

oxidative  damage. However, vitamin C could not restore GPx, GR and CAT 

activities. Melatonin exhibits better protection by declining lipid peroxide level 

more than vitamin C.  

Karaoz E et 

al. (2002) 

(183) 

Combination of vitamin C, vitamin E, and melatonin significantly lowered MDA 

production in lungs of male Wister rats followed by chlorpyrifos ethyl (CE) 

treatment. Endogenous antioxidant enzymes (SOD, GPx, CAT) levels are more 

improved in vitamin C+vitamin E and melatonin group compared to CE  group. 

However, SOD activity was found to be more increased in melatonin treated 

group than vitamin E+vitamin C group. The study suggests that melatonin, and 

vitamin C plus vitamin E considerably attenuate CE toxicity in lung tissues. 

 El-Sokkary 

GH et al. 

(2008) (184) 

Melatonin is more potent than vitamin C in regulation of rat hepatic cell 

proliferation, DNA synthesis and reduction of lipid peroxidation whereas 

vitamin C is better than melatonin in stimulating GSH level and SOD activity in 

diazepam induced oxidative stress and hepatocytes proliferation in male 

Sprague-Dawley rats. 

 

 Akinci A et 

al. (2013) 

(185) 

Melatonin provides protection against intensive stress induced gastric damage to 

a greater extent than vitamin C and β carotene. 

Ajibade TO 

et al. (2017) 

(181) 

Melatonin and vitamin C both ameliorate phenyl hydrazine induced haemolytic 

anaemia and oxidative stress mediated cardiac and renal dysfunction. However, 

the cardiac, renal and erythrocytes MDA content caused by phenyl hydrazine, 

was significantly reduced by melatonin and vitamin C with more efficiency in 

melatonin treatment. The antioxidant enzymes and reduced glutathione content 

were increased in melatonin as well as vitamin C treated group. 
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and preserves the healthy pancreatic β-cells to prevent insulin leakage in diabetic animal model 

(147, 148). This indicates melatonin’s role in glucose metabolism. Elevated glucose level has been 

observed in pinealectomized rats even in the presence of high insulin levels. This is probably due 

to the increased gluconeogenesis in these rats (149). The potential mechanism is that melatonin 

inhibits phosphoenolpyruvate carboxykinase (PEPCK), the major enzyme in the gluconeogenic 

pathway, by up-regulating the rate of AKT phosphorylation, required for lowering PEPCK gene 

expression (149). In addition, melatonin also promotes glucose utilization via the pentose 

phosphate pathway by increasing  glucose-6-phosphate dehydrogenase activity hence, restricting 

glucose accumulation as well as enhancing NADPH formation required for glutathione 

metabolism (150, 151). Furthermore, the strong anti-inflammatory action of melatonin confers it 

more powerful against inflammation-induced metabolic disorders. The inflammation induced by 

pro-inflammatory cytokines including TNF-α, IL-6, IL-1β, and CRP (C reactive Protein) is a 

important risk factor of  both type 1 and type 2 diabetes (152). In this context, melatonin modulates 

the pro-inflammatory transcriptional factor NFκB signaling pathway and deactivates NLRP3 

(153,154). In diabetic rats, melatonin was found to restore the activity of pancreatic β-cells by 

improving anti-inflammatory cytokine IL10 level along with lowering the pro-inflammatory 

cytokines (155). As to other classic antioxidants, since oxidative stress-induced cardiac 

dysfunction is directly linked to diabetes, thus, vitamin C has been used in diabetic patients in 

preventing microangiopathy (156), decreasing atherosclerotic plaque and strengthening the 

vascular integrity (157). An elevated plasma level of vitamin E was observed in diabetes. This 

could be either the outcome of defective utilization or a compensatory effect to combat stress-

mediated diabetes (156). Vitamin D also provides some beneficial effects against diabetes (158). 

The presence of VDR in pancreatic β-cells indicates its involvement in insulin secretion (158). 

Vitamin D regulates calbindin, the calcium-binding protein in β-cell which modulates insulin 

secretion via regulating intracellular calcium (158). An in vitro study by Norman et al. (159) have 

showed that insulin secretion is reduced by almost 48% in vitamin D deficient perfused rat 

pancreas compared with that of vitamin D replenished group  The in vivo experiments also support 

the same evidence (160). This antioxidant vitamin indirectly inhibits cytokine-induced pancreatic 

cell apoptosis via down-regulating NFκB (161). Based on evidences mentioned above,  melatonin 

and antioxidant vitamins have the capacity to protect against hyperglycemia. 

 

7.4. Protection against hemolytic anemia. 

 

Oxidative stress is a major factor to impact functions of erythrocytes. Thalassemia, is a 

hereditary haemolytic anaemia with absent or reduced production of either α globin chain (α-

thalassemia) or β globin chain (β-thalassemia). Both these types are characterized by abnormal 

erythropoiesis and short red blood cells (RBC) life span with associated symptoms of anaemia, 

hepato-splenomegaly and iron overload in RBC (162). The haemoglobin oxidation and superoxide 

anion formation in RBC are the other characteristic features in thalassaemic patients (163). 

Structural deformities of protein binding in RBC cause hemolysis leading to leakage of free iron 

in circulation.  In addition to endogenous iron release in thalassaemic patients, iron overload occurs 

due to blood transfusion and oral iron intake (164, 165). In contrast to free iron accumulation, iron 

deficiency also leads to haemolytic anaemia. Decreased rate of RBC formation with subsequent 

loss of haemoglobin synthesis is the main outcome of iron deficiency anaemia (166). On the other 

hand, individuals with G6PDH deficient are also subjected to haemolysis. G6PDH is the key 

enzyme in the hexose monophosphate (HMP) shunt pathway which generates reducing metabolites 
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like NADPH in RBC. HMP shunt pathway is the sole source of NADPH formation in RBCs as 

they are devoid of mitochondria (167). NADPH enhances reduced glutathione (GSH)  levels when 

the erythrocytes are subjected to oxidative stress. G6PDH deficiency in X-linked recessive 

disorder results in NADPH depletion and diminished GSH regeneration (168, 169). The most 

common clinical consequences in G6PDH deficient subjects are neonatal jaundice and chronic 

haemolytic anaemia (170). As oxidative stress seems to be a major etiology in haemolytic anaemia, 

the application of antioxidants appears effective in combating erythrocytic deformities. In this 

respect, melatonin seems as a suitable choice  (171). Allegra et al. have tested the protective effects 

of melatonin on human erythrocytes from MDA-induced oxidative stress and they observed that 

melatonin inhibits the vitamin E oxidation (172). The protective mechanisms of melatonin are not 

only confined by its free radical scavenging activity but also the iron-chelating property. Melatonin 

chelates iron to prevent hydroxyl radical formation and consequent eryptosis (170, 173). 

Comparably, vitamin C (174) and vitamin E (175) also have a stimulatory role in erythropoiesis. 

For example, rats with vitamin A deficiency suffer haematological disturbances including losses 

of haematopoietic tissue in bone marrow, hypochromia, reduced haemoglobin concentration and 

splenic accumulation of haemosiderin (176, 177). β-carotene and resveratrol have been reported 

to directly scavenge ROS in human erythrocyte by improving antioxidant enzyme activity (178). 

Vitamin C as a reducing agent, facilitates iron absorption as well as iron mobilization. The 

formation of iron-ascorbate chelate is more soluble in the alkaline medium of the intestine and 

hence increases its  absorption rate  (179,  180). The combination of vitamin C and melatonin has 

been used in preventing phenylhydrazine-induced haemolytic anaemia and associated 

cardiovascular disorders (181). 

 

8. CONCLUDING REMARKS AND FUTURE PERSPECTIVE 

     Melatonin as a broad-spectrum antioxidant scavenges free radicals under a variety of 

physiopathological conditions. The cascade reactions of melatonin with its metabolites make it 

more potent  than other classical antioxidant vitamins. Most of the vitamins only have the capacity 

to scavenge one ROS per molecule, whereas melatonin having the ability to interact with several  

ROS and RNS due to its metabolites retaining the capability to further detoxify the radical. For 

this reason, melatonin scavenges multiple times of more toxic ROS than any other classic 

antioxidants (186). Hence, from this review we conclude that melatonin is superior than other 

classical antioxidant vitamins as to its protective effect on oxidative tissue damage. Moreover, 

melatonin can be an option combined with vitamins and this combination  can bring more assertive 

outcomes toward offering protection against oxidative stress in organisms.  
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